
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECOLOGY

Mr/=/I-151

DTi
ELECTEMAR 1 9 1980,

romnuIBE caw=D~

-amkmso Toffoli

February 1980 :. *

This research %ws supported by the Office of
0 Naval .'esearch under Contract No. N00014-75-C-0661

LW
--j 545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 021W2

1 80 3 17 208

SECURITY CLASSIFICAT-ON OF THIS PAGE (Whe. Dlta Entered
REPORT DOCUMEN'ATION PAGE BESRESUCOONSFORM

S-tOV ACCESSIC N RECIPIENT' CATALOG NUMBER

T-T7T 7- .ii) 5 TYPE OF REPORT 6 PERIOD COVEREO

R eversible Cmutng 7_ _ __ _ _
N PERFORMING ORG. REPbRT NUMBER

7 AUTHORI(.) - CONTRACT OR OPANT NUMBER(.)

SPIERFORMING fOANIZATION NAME AND ADDRESS / 10 PRC GRAM ELEMENT, PROJECT. TASK

M iLaboratory for Carputer)c'en-e A LA & WORK UNIT UMBRS

515 rechnology Square
Carrbridge, MA 02139 _-_

II 1CONTROLLING OFFICE NAME AND ADORESSR T]/

Information Systems Program 3 NUMBER OF PAES
Arlington, VA 22217 38

14 MONITORING AGENCY NAME N ADDRESJ(it alfl:nI lIoo C4IIAu OUffice) IS SECURITY CLASS (.I Chi. PontI)

I' /Unclassified
I$* DEC ASSIFICATION/DOWNNRADIHO

16 OSTRIBUTION STATEMENT (of this Report)

i's document has been approved for public release and sale;
its distribution is unlimited

17 DISTRISIU rION STATEMENT (ol the histlac e .ted In block 20, II t iI',ant Itrom Report)

DTIC
E LE 7 T f.

1H SUPFLEI ENTARY NOTES MR 1 9 1771

19 KEY WORDS (" .,In,, on revi di nectfary and Identity bY block nu-ber)

Reversible coi-putinq
cirpitation universality
auto)ata
carvputin networks
physical computing

20 USAI T (Cninue on nl*i.. ld. - ais ... n, .. d I4niiI by Aloc "-be,)

_-), Th4 f-heory of rex ersible comiputing is based on invertible primitives and
carposition rules that preserve invertibility. With these constraints, one
can still satisfactorily deal wich both functional and structural aspects of
ca putinq processes; at the sae time, one attains a closer correspondence
bbtsL en U, behavior of abstract computing systems and the microscopic physical
laws (which are presned to be strictly reversible) that underly any concrete
L, 'Iu onation of such systems. Heere 7 -e integrate)into a ocirprehensive

DD 1473 EVQ IOC OT NOV TN 'S
n

SeOLETE

SECnLTT CLASS,FICATIOII OF THIS -AGE (Who,~f Doti, EI~I90l

$99MMA LAVICATIo OF THU FPA6L. 00. &WKS*

2U. 'picture a variety of oonc~pts and results. According to a physical
interpretticm, the central result of this paper is that it is ideally
possible to bud sequential circuits with zero internal power
dissipation. Even when these circpcs are interfaced with conventional
ones, power dissipation at the interface would be at most proportionalto the number of input/output lines, rather than to the number of logic
gates as in conve.tional omputers.

I.

1EUIYCLSIIA

RL~VERSEBLE OMNPUTING *

+~V Ag,"
Tormnaso offoli s?2 N

MIT Laboratory for Computer Science

545 Technology Sq., Cambridge, MA 021St - t

Abstract, The theory of revervible computing is based on invertible
primitives and composition rules that premme invertibility. With these con-
straints, one can still satisfactorily deal with both junctional and structural
aspects of computing processes, at the same time, one attains a closer cor-
respondence between the behavior of abstract computing systemis and the
microscopic physical laws (which ae presumed to be strictly reverN;ble) that
underly' any concrete implementation of such systems.

Here, we integrate into a comprehensive picture a variety r. c ancepts
and results. According to a physical interpretation, the central r':0!., of this
paper is that it i3 ideallypossible to build sequential circuits with cea .1ternal
power dissipation. Even when these circuits are interfaced with o.-wextional
ones, power dissipation at the Interface would be at moat pv'.P),Wonal t,
the number of input/output lines, rather than to the numbe.- of lcgic gat(
as in conventional computers.

Keywords. Reversible computing, computat'. i u ~eruallf:,,
automata, computing networks, physical computing.

1. Introduction

Mathematical models of computation are abstract .;w etlotuc, b,',
nature unfettered by physical laws. However, if these arc, V, a ' !
dications that are relevant to concrete computing, they et mehcw r.vt n e
albeit in a selective and stylized way, certain general mysical restrictio; to
which all concrete computing processes are subjected. ' r instance, the T ing
machine, which embodies in a heuristic form the axi.''~ of computability theory,
avowedly accounts in its design[24 for the fact thai dhe speed of propagation
of information is bounded, and that the amount o, 'aformation which can be
encoded in the state of a finite system is bounded. However, other physli,
'This research was supported by Grant N0001445-C-061, Ofice of Naval

Research, funded by DARPA.

I

principles of ciraparable importance, such as the reversibility at a microscopic
level of the dynamical laws (which imposes severe constraints on the operation of
concrete computing primltives[12,23]) and the fact that the topology of spacetime
is locally Euclidean (which severely limits the range of interconnection patterns
for concrete computing structures[191), are not yet adequately represented in
the theory of computing. Conceivably, a better match between the abstract
con ructr of the theory and its applications would be attained if a suitable
counterpart of these principles were incorporated in the theory.

Here, we shall be concerned with the issue of reversibilily. Intuitively, a
dynamical system is reversible if from any point of its state sat one can uniquely
trace a trajectory backward as well as forward in time. For a time-discrete
systcom such as an automaton, this is equivalent to saying that its transition
function is invertible, that is, bijective. The concept of reversibility has its
origins in physics, and, in particular, in the study of continuous systems, such
a.4 those characterized by a differential equation, rather than discrete systems,
which are characterized by a transition function. In the continuous case, a more
technical definition is necessary; namely, a dynamical system is reversible if
its dynamical semigroup can be expanded to a group[14]. The connection be-
tween these two definitions is immediate, since in the discrete case the transition
function coincides with the generator of the system's semigroup.

It shoulb he noted that reversibility does not imply invariance under ime
reversal; the latter is a more specialized notion which is definable in a nontrivinc
way only for dynamical systems having additional structure.

In the past, aome misgivings were expressed concerning the computing
capabilities of reversible automata. Such misgivings were cleared by the work of
Bennett (reversible Turing machines[4]), Priese (reversible computers embedded
in Thue systems[17]), Fredkin (conuervative logic[71), and Toffoli (reversible cel-
lular automata[20]). Today, the concept of reveraible computing appears to be
not only productive from a theoretical viewpoint but also promising in terms
of technological applicationsl8l.

In fact, one of the strongest motivations for the study of reversible comput-
ing comes from the desie to reduce heat dissipation in computing machinery,
and thus achieve higher denhity and speed. Briefly, while the laws of physics
are presumed to be strictly reversible, abstract computing is usually thought of
as an irreversible process, since it may involve the evaluation of many-to-one
functions. Thus, as one proceeds down from an abstract computing task to a
formal realization by means of a digital network and finally to an Implementation
in a physical system, at some level of this modeling hierarchy there must take
place the transition from the irreversibility of the given computing process to

2

the reversibility of the physical laws. In the customary approaci;, this transition
occurs at a very low level and is hidden--so to speak-in the "physics" of the~individual digital gate;* as a consequence of this approach, the det.ails of the
work-to-heat conversion process are put beyond the reach of the conceptual

model of computation that is used.
On the other hand, it is possible to formulate a more general conceptual

model of computation such that the gap between the irreversibility of the desired
behavior and the reversibility of a given underlying mechanism is bridged in an
explicit way within the model itself. This we shall do in the present paper.

An important advantage of our approach is that any operations (such as

the cleazing of a register) that in conventional logic lead to the destruction of
macroscopic information, and thus entail energy dissipation, here can be planned
at the whole-circuit level rather than at the gate level, and most of the time
can be replaced by an information-lossless variant. As a consequence, it appears
possible to design circuits whose internal power dissipation, under Ideal physical
circumstances, is zero. The power dissipaticn that would arise at the interface
between such circuits and the outside world would be at most proportional to
the number of input/output lines, rather than to the number of logic gates.

2. Terminology and notation

A function 0: X-" Y is finite if X .nd Y are finite sets. A finite automaton is
a dynamical system characterized by a transition function of the form r: X X
Q -- Q X Y, where r is finite.

Without loss of generality, one may ass th ' such mets as X, Y, and
Q above be explicitly given as indexed Cartesia.)roducts of sets. We shall
occasionally call lines the individual variables associated with the individual
factors of such products. By convention, the Cartesian product of zero factors
is identified with the dummy set {) consisting of the empty word X. In what
follows, we shall assume once and for all that all factors of the aforementioned
Cart -sian products be identical copies of the Boolean set B -{O, 1). This
assumption entails little loss of generality, and-at any rate-the theory of
reversible computing could be developed along essentially the same lines if such
assumptio i Nvere dropped.

Typicalyt he computation is logi ally organized around computing' pr1ritives
that are not invertible, such as the NAND gate; in turn, these are realized by physical
devices whi% h, while by thiir nature obeying reversible microscopic laws, are made
macroscopicully ir,,versible by allowiug them to convert some work to heat.

3

The concept of "function composition" is a fundamental one in the theory of I
computing. According to the ordinary rules for function composition, an output
variable of one function may be substituted for any number of input variables of
other functions, i.e., arbitrary"fan-out" of lines is allowed. However, the process
of generating multiple copies of a given signal must be treated with particular

care when reversibility is an issue (moreover, from a physical viewpoint this
process is far from trivial). For this reason, in all that follows we shall restrict the
meaning of the term "function composition" to one-to-one composition, where

any substitution of output variables for input vadiables is one-to-one (in other,
words, no fan-out of lines is allowed). Any fan-out node in a given function-
composition scheme will have to be treated as an explicit occurrence of a fan-out
function of the form (z) " (z , z). Intuitively, the reaponsibility for providing
fan-out is shifted from the composition rules to the computing primitives.

We shall be dealing with various classes of abstract computers (such as com-
binational networks, finite Automata, Turing machines, and cellular automata)
which constitute the main paradigms of the theory of computing. An abstract
computer is, in essence, a function-composition schemne,* and a computation is

a particular solution (which may be required to satisfy certain boundary condi-
tions or other constraints) of such a scheme. While finite composition schemes
are adequate for dealing with the most elementary aspects of computing, many
computing processes of interest require an unbounded amount of resources and
are more conveniently represented as taking place in infinite schemes.

It is customary to express a function-composition scheme in graphical form
as a causality network (or functional-dependence network). This is basically an
acyclic directed graph whose nodes are labeled by associating with each of them
a particular finite function and whose arcs are colored by associating with each
of them a pai ticular variable. (Here, we can safely ignore certain slight technical
differencea between a causality network and a directed graph.)

By construction, causality networks are "loop-free," i.e., they contain no
cyclic paths. A combinational network is a causality network that contahis no
infinite paths. Note that a finite causality network is always a combinational
one.

With certain additional conventions, causality networks having a par icular
iterative structure can be represented more compactly as sequential networks
(cf. Section 7).

We shall assume familiarity with the concept of "reali,ation" of finite func-

*In what follows, we shall restrict our attention to function-compoe- tio c
based on finite primitives.

4

tions and automata by means of, respectively, combinational and sequential
networks. In what follows, a "realization" will always mean a componentwise
one; that is, to each input (or output) line of a finite function there will cor-
respond an input (or output) line in the combinational network that realizes it,
and simiiariy for she realization of automata by sequential networks.

A causality network is reversible if it is obtained by composition of inver-
til primitives. Note that a reversible combinatioDal network aiways defines an
invertible function. Thus, in the case of combinational networks the structural
aspect of "reversibility" and the functional aspect of "invertibility" coincide.
A sequential network is reversible if its combinational part (i.e., the combina-
tional network obtained by d.cting the delay elements and thus breaking the
correepondlug arcs) is reversible.

3. In'"duttory concepts

As exp!! ined in Section 1, our overall goal is to develop an explicit realiza-
tion of computing processes within the context of reversible systems. For the
moment, the processes we shall deal with v.ill be those described by finite func-
tions, and the systems used for their realization will b,- reversible combinational
networks. Later on, we shall consider sequential processes, characterized by the
presence of internal states in addition to input and output states, and we shall
study their realization by means of reversible sequential networks.

As an introduction, let us consider two simple functions, namely, PAN.OUT
(3.1a) and XOR (3.1b):

X1 X2 Y

00 b) 00 0

11 6 (3.1)

PAN-OUT XOI1
X/ YJ X X:1Y X1 2

Neither of the= functions is invertible. (Indeed, PAN-OUT is not surjective, since,

for instance, tht .utput (0, 1) cannot be obtained for any input value; and xon

5

is not injective, since, for instance, the output 0 can be obtained from two dis-
tinct input values, (0, 0) and (4, J)). Yet, b.otb functions admit c! In invertible

realization.
To see this, consider the invertible function xoRPANouT defined by the

table
00 t0
01 ALo .. ' (3.2)
11 01

which we have copied over with different headings in (3.3a), (3.3b), and (3.6b).
Then, PAN.OUT can be realized by means of this function* as in (3.3a) (where
we have outlined the relevant table entries), by assigning a value of 0 to the
auxiliary input component c, and xon can be realized by means of the same
function as in (3.3b), by simply disregarding the auxiliary output component
g. In more technical terms, (3.1a) is obtained from (3.3a) by componentwise
restriction, ane (3.1b) from (3.3b) by projection.

o010 Fo IC -l
(a 0 2l (b) [00 [DL

10 1 0 mm meI o0 mm -i (3.3)

Y' XE1 2;2
I

In vhat follows, we shall collectively call the source the auxiliary input
compo! ants that have been used in a realization, such as component c In (3.3a),
and th. sink the auxiliary output components such as g in (3.3b). The remaining
input components will be collectively called the argument, and the remaining
output components, the result.

In general, both source and sink lines will have to be introduced it, tv' _e

"irain~tly, one speaks of a realization "by a network." Note, though,thairi

finite function by itseit constitutes a trivial case of combinational network.

to construct an invertible realiaitiou of. given function.

X1X2 y
90 0 y V

(4 b 0I
11 1 (3 .4)

AND NOT

For example, from the invertible function AND/NAID defined by the table

000 000
001 001
010 010
Oil- OI (3.5)
100 100'
101 101
110 110
ILL 011

the AND function (3.4a) can be realized as in (3.6a) with one source line and two
sink lines.

CX1X2 ygl1j

0I 1- [001o0010 (010 R [)o1] oi c

(a) DIM - u I (b) 1 "+ ie
10 0 10 0 D
101 1 01
110 110
111 011 (3.6)

I71~ Y 112 X i 4 J Yx

y g2(= XI)c'=)

91(= -1)

7

Observe that in order to obtain the desired result the source lines must be
fed with specified constant values, i.e., with values that do not depend on the
argument. As for the sink lines, some may yield, values that do depend on thu
argument-s in (3.6a)--and thus cannot be used as input constants for a new
computation; these will be called garbage lines. On the other br.nd, some sink
lines may return constant values; indeed, this happens whenever the functional
relationship between argument and result is itself -a invertible one. To give a
trivial example, suppose that the NOTI function (3.4b), which is invertible, were
not available as a primitive. In this case one ciuld still realize it starting from
another invertible function, e.g., from the xo/FAN.ouT function as in (3.6b);
note that here the sink: c, returns in any case the value present at the source, c.
In general; if there exists between a set of source lines and a set of sijk lines an
invertible functional relationship that is independent of the value of all other
Input lines, then this pair of sets will be called (for reanous that will be made
clear in Section 5) a temporary-storage channel.

Using the terminology just established, we htli say that the above realiza-
tion of the PAN.oU function by means of an invertible combinational function
is a realization with constants, that of the xoR function, with garbage, that of
the AND function, with constants and garbage, and that of tht. NoT function,
with temporary storage (for the sake of nomenclature, tke source lins that are
part of a temporary-storage channel will not be counted as lines of :onstants).
In referring to a realization, features that are not explicitly mentioned will be
assumed not to have been used; thus, a realization "with temporary storag¢"
is one without constants or garbage. A realization that does not require any
nource or sink lines will be called an isomorphic realization.

4. The fundamental theorem

Ia the light of the particular examples discussed in the previous section, this
section establishes a general method for realizing an arbitrary finite function 4,
by means of an invertible finite function f.

Here, we are concerned with realizations in the sense defined in Section 2.
In more general rnathematical parlance, a realization of a function 4 consia; a of
a new function f together with two mappings p and v (respectively, th- encoder
and the decoder) such that , = ifp. In this context, our plan is to obtain
a realization vfi* of o, such that f is invertible and the mappings p and v' are
essentially indnp-ndent of 4, and contain as little "computing power" as possible.
More precisely, though the form of p and v, must obviously reflect the number
of input and -output components of 4, and thus the format of O,'s truth table,

8

we want them to be otherwise independent of the particular contents of such
truth table as q is made to range over the set of all combinatorial functions.

In general, given any finite function one obtains a new one by assigning
specified values to certain distinguished input lines (source) and disregarding
certain distinguished output lines (sink). According to the following theorem,
any finite function can be realized in this way starting from a suitable invertible
one.

T olrwm 4.1 For every finite function 4: B"-, B" there exists an !ver-
tible finite function f Be X B"'-4 B" X B'+m'-" with r < n, such that

-(f..PII..1X 4 (i ,..,) (4.1)

Proof. Let 4' be defined by a binary table of the following form

where X denotes a listing of all 2"' m-tuples over B and Y 6enetes a listing
of the corresponding valuee of 4, which are n-tuples over B. We shall define a
function f: B"+m --4 B'+"' by means of the followiiD table

n 2n M- M

where each block vf the form k (0 < k < 2") consists of 2" identical n-tuples
each representing the integer k written in base 2, while each block of the form
Y + k (0 < k < 2") consists of the 2' entries of Y each treated as a base-
2 integer and incremented by k mod 2". (So the sequence of "Y + V? blocks
differs from the "k" sequence only by a circular permutation.) By construction,
each side of this table contains each element of B"+m exactly once. Thus, f is
invertible. Moreover, equation (4.1), with r - n, holds by construction. I

9

The meaning of Theorem 4.1 is illustrated in Figure 4.1 below. The opera-
tions of restriction and projection mentioned in Section 3 are respectively per-
formed by an input encoder p and an output decoder P. While letting through
the argument (z1,... , ,, unchanged, the encoder supplles the r source lines
with constant values, I.e., with values that do not depend on the argument itself.
On the other hand, while letting through the result (zj,..., S unchanged, the
t-coder absorts whatever values come out of the the m + r - n sink lines.

o0~~- result
o

argument,

Fio. 4.1 Any finite function can be written u the product of a trivhd
encoder p, an invertible finite function f, and a trivial decoder a'.

Intuitively, such a realization of 0 by means of an invertible function f is "fair,"
in the sense that neither p nor P, contribute to the "computing power" off

Since p does not interact with the input signals, it will be more convenient
to visualize it as a separate sotrce of constant input values, as in Figure 4.2b
rather than as an input encoder, as in Figure 4.1; likewise, V is more conveniently
visualized as a separate sink of output values rather than as an output decoder.
To sam up, whatever can be computed by an arbitrary finite function according
to the schema of Figure 4.2a can also be computed by an invertible finite function
according to the schema of Figure 4.2b.

10

source

orb fraryinvertible
argument finite result argument finite result

function function

sink

FIG. 4.2 Any fiaite function (a) can be realized as an invertible finite
function (b) having a number of auxiliary input lines which are ed with
constants and a number of auxiliary output lines whose values are dis-
regarded.

Remark. The construction in the proof of Theorem 4.1 does not necessarily
lea to a minimal realization, as often the number of source lines can be made
strictly less than n and, correspondingly, the number of sink lines strictly 1=.e
than m. Intuitively, in many car-s the given function 4 Is such that much of
the information contained in the argument is retained in the result, so that in
order to guaranteee invertibility f need only preserve in the garbage signals a
traction of the total information.

5. Invertible primitives and reversible networks

In the pre-ious section, each given 4 was realized by a reversible combina-
tional network consisting of a single occurrence of an ad hoc primitivef. In this
section, we shall study the realization of arbitrary finite functions by means
of reversible combinational networks constructed from given primitives; in par-
ticular, from a certain finite set U of very t:mple primitives.

If the given function 40 is defined by means of an arbitrary combinational
netwrfrk (in what follows, we shall assume for simplicity that this network be
based on the NAND element), a reversible realization of 4, based on the set U can
be obtained in a very simple way by subjecting the given network to straightfor-
ward translation rules. However, the reversible realization that is obtained in
thin way in general requires many more sink lines (and, consequently, many more
source lines) than the realization of Section 4. On the other hand, starting from
the same set U of primitives but using more sophisticated synthesis techniques it
is p :ssible to obtain a reversible realization of 4 that does not require any more
gerhage lines than when realizing 4 by means of an ad hoc primitive /. In fact,
f itself--or, for that matter, any invertible finite function-can be synthesized

11

from U without garbage, though possibly with temporary storage.
In this synthesis, the peculiar constraints dictated by the reversibility con-

text force one to pay attention to a number of issues, such as fan-out, temporary
storage, and the handling of constants and garbage, which do not rse-or, at
any rate, are not critical-when these constraints are not preseit. As a counter-
part, the structure of the networks that are thus obtained provides more realistic
indications of what an efficient physical implementation of the corresponding
computing processes would have to be like.

It is well known that, under the ordinary rules of function composition,
the two-input NAND elemen~t constitutes a universal primitive for the set of all
combinational functions.

In the theory of reversible computing, a similar role is played by the AND/NAND

element, defined by (3.5) and graphically represented as in Figure 5.1c. Referring
to (3.6a), observe that y -, x1 (AND function) when c = 0, and y - rj' (NAND

function) when c -I. Thus, as long as one supplies a value of I to input c and
disregards outputs gi and 92, the ANDINAND element can be substituted for any
occurence of a NAND gate in an ordinary combinational network.

In spite of having ruled out fan-out as an intrinsic feature provided by the
composition rul., one can still achieve it as a function realized by means of
an invertible primitive, such as the XOR/FAN.OUT element defined by (3.2) and
gra.,hically represented as in Figure 5.lb. In (3.3a), observe that YJ - I - x
when c = 0 (PAN.OUT function); and in (3.3b), that y - xj a) x2 (xon function).

Finally, recall that finite composition always yields invertible functions when
applied to invertible functions (cf. Section 2).

Therefore, using the set of invertible primitives consisting of the AND/NAND

element and the xo/r.N.OUT element, any combinational network can be im-
mediately translated into a reversible one which, when provided with appropriate
input constarts, will reproduce the, behavior of the originai network. Indeed,
even the set U consisting of the single element AND/NAND is sufficient for this
purpose, since XoDrFAN.OUT can be obtained from AND/NANO, with one line of
temporarty storage, by taking advantage of the mapping (I, p, q) 1-+ (1, p,), Eq).)

The element-by-elemen' substitution procedure outlined above for construct-
ing a reversible-network realization of a given combinational function is wasteful,
in the sense that the number of source and sink lines that are introduced by this
construction is roughlj proportional to th.: number of computing elements that
make. up the network, and therefore in general much larger than the minimum
required to compensate for the noninvertibility of the given function (ef. Section
4).

12

From the viewpoint of a physical implementation, where signals are encoded
in some form of energy, each constant input entails the supply of energy of
predictable form, or work, and each garbage output entails the removal of energy
of unpredictbL:N form, or heat. In this context, ! realization with fewer source
and sink lines inight point the way to a physical implementation that dissipates
leas energy.

Our plan to achieve a less wasteful realization will be based on the following
concept. While it ir 'rue that each garbage signal is "random," in the sense
that it is not predictable without knowing the value of the argument, yet it will
be correlated with other signals in the network. Taking advantage of this, one
can augment the network in such a way as to make correlated signals interfere
with one another and produce a number of constant sirnals instead of garbage.
These constants can be used as source signals in ,ther parts of the network. In
tbis way, the overall number of both source and rink lines can be reduced. This
proccss is analogous to the destructive interferemce of, say, sound waves. It is
well-known that by superposing two correlated random signals one may obtain
an overall signal which is less "noisy" that either component.

In the remainder of this section we shall show how, in the abstract context
of reversible computing, destructive interferencc of correlated signals can be
achieved in a systematic way. For a similar process of destructive interference
to take place in concrete computers (thus leading to greatly reduced power
dissipation), one would have to match the abstract invertible primitives with
digital gates taht are macroscopically--as well as microscopically-reversible.
The arguments in [7,8,231 strongly suggest that such gates are indeed physically
realizable.

Returning to our mathematical exposition, we shall first show that any in-
vertible finite function can be realized isomorphically from certain generalized
AND/NAND primitives. Then, we shall show that any of these primitives can be
realized from the AND/NAND element posibly with temporary stoiage but with
no garbage.

For convenience, we shall say that an invertible finite function is of order n
if it has n input lines and n output lines.

Dw INITION 5.1 Consider the set B - {0, 1) with the usual structure of
Boolean ring, with "(J" (exclusive-on) denoting the addition operator, "e"
the additive-inverse operator (which in this case coincides with the identity
operator), and juxtaposition (AND) the multiplication operator. For any n > 0,
the generalized AND/NAND fanctioa of order n, denoted by O("): B" -* B", is

13

defined by

ON': ,, (5.1)

ker. EDx ..x
Remark. (a) The e sign in (5.1), which is redundant (since ez - X), has

been introduced for ease of comparison with the arguments of [23]. (b) For any
n > 0, O(n) is invertible and coincides with its Inverse. (c) For i 1 1, 2,..., n-,
the i-th component of O(N, i.e., O(n), coincides with the projection operator for
the corresponding argument, i.e., x. (d) The last omponent
of O(N, i.e., .), coincides with the NOT function for n - I (note that, by
convention, z... xz - I when i - 0), and with the exclusive-oR of its two
arguments for n - 2. (e) For all other values of n, 6K') is still linear in the n-
th argument, but is nonlinear in the first n- I arguments.

We have alteady encountered 0() under the name of the NOT element, 0(2)

under the nnme of the XoRFAN.ouT element, and 0(0) under the name of the
AND/NAND element. The generalized AND/NAND functions are graphically repre-
sented as Ii Figure 5.1d.

-F-I-."r'--i--.r.... I

IIII

NOT XOR/PAN.OUT AND/NAND gencralizcd AND/NAND

Fic. 5.1 Graphic representation of the generalized AND/NAND functions.
WARNING: This representation is offered only as a mnemonic aid in recalling
a function's truth table, and is not meant to imply any "internal structure"
for the function, or suggest any particular implementation mechanism.
(a) 0(), which coincides with the NOT element; (b) 0(2), which coincides
with the XOR/FAN.OUT element; fc? 0(), which coincides with the AND/NAND
element; and, in general, (d) 9 'n, the generalized AND/NAND function of
order n. The bilateral symmetry of these symbols recalls the fact that each

of the corresponding functions coincides with its inverse.

14

An invertible function acts as a permutation on the elements of its domain,
and it is well known that any permutation can be written as a product of elemen-
tary permutations, i.e., of permutations that exchange exactly two elements.
In our attempt to synthesize arbitrary invertible functions of order n we shall
consider, as building blocks, elementary permutations on B" and even more
basic permutations on B" called atomic permutations.

DFINITION 5.2 In the truth table for the AND/NAND element (3.5), observe
that the only difference between the left- and the right-hand side of the table
is that exactly two rows (namely, (0, 1, 1) and (1, 1, 1)) which have a Hamming
distance of I (i.e., differ in exactly one position) have been exchanged. An atomic
permuter is any function having this property.

Any atomic permuter of order n can be constructed from the generalized
AND/NAND element of order n by appending Nor elements to some of the Input
lines and to each of the corresponding output lines, as in Figure 5.2a. Graphically,
this permuter will be represented as in Figure 5.2b, where some of the Inputs
to the AND-gate symbol ar negated (as denoted by a little circle).

2(a) C ru-nd (r
,* , I , lJ

II

I I
I a

I t

Fia. 5.2 (a) Construction and (b) graphic representation of a particular

atomic permuter.

TIIOIM 5.1 Any invertible finite function of order n can be obtained by
composition of atomic permuters of order n, and therefore by composition of
generalized AND/NAND functions of order < n.

Proof. It will be sufficient to show that one can obtain any elementary
permutation on B".

In a table of all elements of B", a sequence of table entries al, a2,... , a, (these
are all n-tuples) are said to form a Gray-code path if any two entries that are
adjacent in this sequence are related by an atomic permutation. Consider the
pair of entries x and y that we wish to exchange, ..d consider a Gray-ode path

15

from z to y (such a path exists for any pair x, y). It is easy to verify that by
means of sequence of atomic permutations item x can be moved to the end of
the path, while the remainder of the path is shifted one position to the left but
is otherwise unchanged. In a similar way, y can be brought to the beginning
cx the path. Thus x and y can be exchanged by means of a sequence of atomic
permutations without affecting the rest of the table.§

Remark. Note that the realization referred to by Theorem 5.1 is an isomor-
phic one (unlike that of Section 4, which makes use of source and sink lines).

THEOREM 5.2 There exist invertible finite functions of order n which cannot
be obtained by composition of generalized AND/NAr4D functions of order strictly
less than n.

Proof. In the context of the proof of Theorem 5.1, when 0(0 is applied to
* any i components of B" this set is divided into 2"'4 disjoint collections of 2'

n-tuples, and each collection is permuted by G(in an identical fashion. Thus,
only even permutations can be obtained when i < n. Since the product of even
permutations is even, only even permutations can bc obtained by one-to-one
comnpodition of any number of AND]NAND functions or order less than n.4

Remark. According to this theorem, tQe AND/NAND primitive is not sufficient
for the isomorphic reversible realization of arbitrary invertible finite functions
of larger order. This result can be generalized to any finite set of invertible
primitives, as implicit in the proof argument. Thus, one must turn to a less
restrictive realization schema involviug source and sink lines.

TH oREM 5.3 Any invertible finite function can be realized, possibly wit h
temporary storage, (but with no garbagell by means of a reversible combina-
tional network using as primitiv m the generalized AND/NAND elements of order
<3.

Proof. In view of Theorem 5.1, it will be sufficient to reali-e (possibly with
temporary storage), for each n, all atomic permuters of order n. Since these can
be realized isomorphically from 0() and O(") (cf. Figure 5.2), it will be sufficient
to real'Le O() itself. We shall proceed by recursion; namely, given O(N-'), *(")
can Lt realized with one line of temporary storage as follows.

Construct the network cf Figure 5.3, which contains two occurrences of
61n-) and one occurrence of 00). Observe that c' s- , since every generalized

I. AND/NAND element coincides with its inverse (h..2 n thus the ec-ond occurrence of
0('- -1) cancels the effect of the first). Therefore, the pair ({c), (dc}) constitutes
a temporary-storage channel. When c = 0, the reniaining variables behave as
the corresponding ones of 8(1),

X3 Y

X5

X4 A4

FIG. 5.3 Realization with temporary storage of 0(1) from O("-1) (and 0()).
In this network, when c - 0, also d - 0, and the remaining components
behave as the corresponding ones of #(").

In the above construction, it is clear that one line of temporary storage is
added every time that one realizes the ANDf,'ANO function of the next higher
order. Thence the following theorem.

THnORnM 5.4. In Theorem 5.3, let r. be the order of the given invertible
function, and m the number of source (as well as sink) lines required required for
temporary-storage channels in the realization. Then rm need not exceed n - 3.
If only 0(3) is given as a primitive, then m need not exceed 3n - 3.

Remark. The second part of this theorem reflects the fact that additional
ternporary-storage lines are needed to realile NOT from AND/NAND (cf. (3.8)).

The proof of Theorem 5.3 establishes a general mechanisms for bringing
about destructive interfe;ence of garbage. With reference to Figure 5.3, which
can serve as an outline for the general case, observe that the left portion of
the network is accompanied by its "mirror image" on the right. The left por-
tion computes an intermediate result (on the line running from c to d) that is
needed ae an input to the lower portion and is returned by it urnchanged. Having

performed its function, this intermediate result is then "undone" by the right
portion, so that. no garbage is left.

The reader may refer to (3,7] for more specific eyamples of destructive in-
terference of garbage.

Taken together, Theorems 5.3 and 5.4 have an interesting interpretation
from the viewpoint of complexity theory. They imply a trade-off between the

number of available primitives and the availability of an appropriate amount of
a resource that, as we shall presently explain, can be intuitively identified with

17

temporary storage (hence the term "temporary-storage channel" introduced in
Section 3.)

Following the lines of the proof of Theorem 5.3, any invertible function f
(Figure 5.4a) can be realised by a network of the kind illustrated in Figure 5.4b
(where only some relevant details have been indicated).

(a) (b)

YYi

,C .. .,(=.c.)

Faa. 5.4 If instead of an ad hoc reversible mechanism (a) for the Invertible
function f one seeks a mechanism bvjed on the AND/NAND primitive, as in
(b), auxiliary constant input signals 'are required. Such signals are returned
unchanged al the output.

Let us consider the process of traversing the box of Figure 5.4b from left to
right. Each line running through th- box represents the evolution of a binary
storage element. In general, all the constants entering the box will be repeatedly
written over as they traverse the box itself; yet, they will emerge from the box
,ith the original values. In this context, . temporary storage channel (such as

the pair ({cl,... , c, {. , c,4))) reF, -f eats a "scratchpad" register which is
initialized to an assigned state (say, all O's) and is invariably restored to the
original state before the end of the computation. (Though more general, this
behavior is analogous to that of the reversible Turing machines described by
Bennett[4] and briefly discussed in Section 7.)

In this context, Theorem 5.2 can be interpreted as saying that, for a given
choice of reversible primitives, it may be impossible to carry out the computation
of a given invertible finite function if one is restricted to working on a register ol
size just enough to contain the argument (cf. the limitations of liuear-bounded
automata). On the other hand, Theorem 5.3 says that this difficulty siappears
as soon as one permits the use of an auxiliary temporary-storage register of
appropriate size.

The following list (cf. Figure 5.5) sums up in a schematic way the
input/output resources of which a reversible network must avail itself in order

18

to be able to compute a finite function €,

(a) argument - - _result
(b) constants garbage
(c) -- temporary storage channels

(d) constants -.- j -- garbage

FiG. 5.5 Classification of Input and output lines In a reverstible comblna-
tlonal network, according to their function. (ai Arguraent and result of the
intended computation. (b) Constant and garbage lines to account for the
noniDVertibility of the given function. (c) "Temporary storage" registers
required when only a restricted set of primitives Is available. (d) Additional
constant and garbage lines required when in designing the network one
chooses not to take full advantage of the correlation between internal
streams of data, and thus looses opportunities to bring &bout destructive
interference of garbage.

(a) If 0 is invertible, and the use of ad hoc primitives is allowed, then no
source or sink lines ar. necessary.

(b) If 0, is not invertible, it is necessary to provide source lines to be fed with
specified constants and/or sink lines which will produce garbage.

(c) Independently of the invertibility of 0, if only a restricted set of primi-
tives is allowed it may be necessary to supply temporary-storage channeld (i.e,
additional source lines to be fed with constants and an equal number of sink
lines which will return constanta).

(d) If, in order to simplify the mechanism, one chooses to ignore that cer-
tain streams of garbage within the mechanism are correlated and thus could be
subjected to destructive interference, then further source and sink lines will be
required, as in (b).

6. Conservative logic

In view of the considerable exertions that were necessary in the previous
nectione in order to obru a bona fide realization of mechar.iams having universal
losic eapab litik azd a. the same time satisfying the ,-eribility constraint,
jne rgt .vnder whether nontrivial computation would be possible at all if
t* sutia f!urther constreintc were imposed.

A ,' it tu nut hat universal logic capabilities can still be obtained
t; n if one reatrkts one's attention to combinational networks that, in addition

19

to being reversible, conserve in the output the number of O's and l's that are
present at the input. The study of such netw.:ks is part of a discipline called
conservative logic [7] (also cf. 1I1). As a matter of fact, most of the results
of Sections 4 and 5 were originally derived by Fredkin and associates in the
context of conservative logic.

In conservative logic, all data processing is ultimately reduced to conditional
routing of signals. Roughly speaking, signals are treated as unalterable objecti;
that can be moved around in the course of a computation but never created or
destroyed. The physical significance of this principle will be discussed shortly.

The basic primitive of conservative logic is the Fredkin gate (cf. [76]), defined
by the table

0 00 000
0 01 010
010 001
0 1 1 01 1 (6.1)1 00 1 to0'
110 IV0
111 111

This computing element can be visualized as a device that performs conditional
crossover of two data signals a and b according to the value of a control signal
c (Figure 6.A). When c - I the two data signals follow parallel paths, while
when c .0 they cross over (Figure 6.1b).

(a) (b)
1 00

a ;..-- a <,a b
b b _ b a

Fi. 6.1 (a) Symbol and (b) operation of the Fredkin gate.

In order to prove the universality of this gate as a logic primitive for reversible
computing, it is sufficient to observe that AND can be obtained hom the mapping

'Beaides a combinational primitive (the 7redkin gate dissussed b. kow), conserva-
tive logic also posits a communication/memory primitive (the unit wire). Together,
these two primitives are sufficient to account for sequential cfmputation. Moreover,
they provide a basis for a theory of computation complexity which inorporates
certain important physical-like constraints that are usually neglected.

20

(p, q, 0) (p, pq, Pq), and NOT and FAN-ouT from the mapping (p, 1, 0) " (p,p,p.

There exists only one other 3-input, 3-output conservative-loglc element, that
can be used a,5 a universal primitive; this is the symmetric majority/parity sate
(am) defined by

0 00 ~000
001 1 O0
010 ;01
0 1 1 1 1 0 (6.2)
100 ;1 .0
101 011
110 101
111 111

Intuitively, in the sm gate the three signals are rotated in one direction if their
overall parity is even, and in the other direction if it is odd. While the amp gate
can be realized isomorphically by means of Fredkin gates, a realization of the
latter by the former requires a temporary-storage channel. In this sense, the
Fredkin gate is the most elementary conservative-logic primitive--aince no 2-
input, 2-output invertible function Is univernal.

Finally, the Fredkin gate can be realized luomorphlcaly by means of
AND/NAND gates, as shown LI Figure 6.2.

X1

C -

Fia. 6.2 Isomorphic realization of the Fredkin gate by me~na OfAND/NAND

gates.

It is important to realize that, far from representing merely an elegant tour-
de-force in the theory of reversible computing, conservative logic provides an es-
sential connection between that theory and the physics of computing circuits. In

' even more lementary coneervative-logic primitive, namely, the interaction
gate[7], can be obtained if one considers invertible function whose domain and
codomain coincide with a proper subset of a set of the form By.

21

fact, while in any reversible system whatsoever there are a number of conserved
quantities, in physical system many of these quantities are required to have a
special structure. For instance, energy, momemtum, and angular momentum
are additive (this reflects certain symmetries of space and timt). Intuitively,
reversibility by itself is not sufficient to give enough physical "flavor" to a theory
of computing.

In a conservative logic circuit, the number of l's, which is conserved in the
operation of the circuit, is the sum of the number of l's in different parts of
the circuit. Thus, this quantity is additive, and can be shown to play a formal
role analogous to that of energy in physical systems. Other connections between
conservative logic and physics will discussed in more detail in [71

In conclusion, conservative logic represents a substantial step in the develop-
ment of a model of computation that adequately reflects the basic laws of p.hysics.

T. Reveralble sequential computing

In Sections 4 and 5, we started from a certain computing object (, iz., a
finite function), and we discussed the conditions for its reversible realization
first (a) as an object of the same nature (viz,, an invertible finite function)
treated as a "lumped" system, thus stressing functional aspects, and then (b) as
a "distributed" system (viz., a reversible combinational network), thus stressing
structural aspects and paving the way for a natural physical implementation.

By and large, we shall follow a similar plan in dealing with the more com-
plex computing objects that constitute the paradigms of sequential computiug,
namely, finite automata (in the present section), Turing machines (Section 8),
and cellular automata (Section 9).

First, we shall make a few commemts on sequential computing in general.
In Section 2, we defined an abstract computer as a function-composition

scheme. Some of these schemes possess a regular structure of a certain kind,
namely, they are time-iterative,* and with appropriate corventions can be rep-
resented much more compactly in terms of sequential networks (cf. [9]).

*If the partial-order rela-tion beteen arcs that is 1'nduced by the function-
composition operation is interpreted as a causal relationship between signals, then
certain other relations between arcs are naturally interpreted as referring to spatial
and temporal relationships. In this context, a causal network may possess certain
automorphisms that may be interpreted as time shifts, and In this case the network
is time-iterativt, similarly, it may possess automorphisms corresponding to spatial
shifts, and in this case it is space-iterativ.

222

Consider, for definiteness, the iterative function-composition scheme

q.+1 i $

explicitly represented by the infinite causal network of Figure 7.1.

x, q,+2
XS+ I

!I

y,,
YYA

Fia. 7.1 A function-compoeltion scheme havinga thne.iterative structure.

The same scheme can be represented by the finite sequential network of Figttre
7.2. By comparing this figure with Figure 7.1, it is clear that the role of the so-
called "delay elemente" in a sequential Letwork Is to mark out those places that
correspond to the boundary between one stage and the next in the equivalent
time-iterative combinational network.

Fia. 7.2 The 4ame function-compoasition scheme ar .'eprmented by a finite
sequential network.

r the previons sections, for the sake of realization argu r, -5 we have treated
a finite' ,tct-r, as a combinational network consisting of a sina,.'e node. Similarly,
we shah , at b finite automaton as a sequential network whose combinational
part cora : rif a single node, representing the automaton's transition function.
Thus, for ttnple, the network of Figure 7.2 can be Identified with the finite
automaton (q) '-' ()q, x a) q).

23

Finally, recalling that a computation is a solution of a function-composition
scheme (cf. Section 2), let us note that one is usually not interested in arbitrary
solutions; rather, one seeks solutions corresponding to particular boundary con-
ditions (defined, for instance, by assigning specified values to the input lines).
Moreover, in the case of a time-iterative scheme, one is usually interested only
in that portion of the scheme whose elements are indexed by i > is (for an
arbitrary /o). The assignment of specified values to the new input lines that
are created in this way (i.e., by "cutting" the network in hall) corresponds to
Initializing the delay elements in the sequential-network representation.

By definition, a finite automaton is reversible if its transition function is
invertible. Thus, in order to realize a finite automaton by means of a reversible
z,'jntirl network, it will be sufficient to take its transition function, construct
a reversible realization of it, and use this as the combinational part of the desired
sequential network. The problem of reversibly realizing an arbitrary finite func-
tion has been solved In Section 4. Thus, we have the following theorem.

ToRPm 7.1. For every finite automaton r: X X Q -- Q X Y, where X-
B", Y B" and Q Bu, there exists a revesible finite automaton t: (B7 X
B m) X Bu , Bu X (B" X B?+"-"), with r < n + u, sudL that

0(O . .. , O, x, . .. ,xmql, . .. , 7*"j(xl, f .. . m, ql, ,,(-l..t--

In other words, whatever can be computed by an arbitrary -nite automaton
according to the scheme of Figure 7.3a can 9lsc be coip%. ild by a, °.verible
finite automaton according to the schema of Figure 7.3b.

24

(a) (b) source

input- arbitrary output input invertible output
old stae te state finite

function, function

tsink

delays

delays

F20. 7.3 Any finite automaton (a) can be realized as a reversible finite
automaton (b) having a number of auxiliary input lines (source) which are
led with constants and a number of auxiliary output lines (Link) whose
values are disregarded.

The following theorem, which from a mathematical viewpoint is trivial, is
a restatement of the second law of thermodynandcs. Recall that ru automaton
is closed if X - (N} (i.e., there are no input lines); open, otherwise.

TneoEum 7.2 If a closed, finite automaton is not reversible, then It does
not admit of a reversible realization that is both closed and finite.

Proof. Given a nonreversible automaton r: Q - Q, assume that t: P -- P
be a reversible realization of r. That is, we assume the existence of an Invertible
finite function t and of two maps p and ts (respectively, the encoder and the
decoder) such that, for all i > 0,

ii . (7.2)

Since automaton t is finite and reversible, for any p E P there exists an ip > 0
such that '(p) = p. Thus, for any q E Q, vt'.(q)p(q) - vp(q). But, in view of
(7.2), vp(q) - q and vt'(5)p(q) - r16(g)(q). As a consequence, -4 (;)(q) q for
all q. On the other hand, since automaton r is finite and nonreversible, there
must be at least one q E Q such that rl(q) 74 q for all i > 0. Thus, the r-lginal
assumption leads to a cor tradiction.1

Remark. According to Theorem 4.1, noninvertible functions can be com.
puted by a reversible system provided that a supply of constants to madis a:val-
able. in an open system, this supply may come from some Input lines. In a

25

closed system, in order to perform a computation in one part of the system one
may draw constants from another part, for instance, the indefinitely extended
blank tape of a Turing machine (cf. Section 8). However, if the system Is also
finite, this supply will eventually run out.

Thus, the interpretation that a finite, closed, and reversible system "is
modeling an irreversible process" can only be maintained for particular initial
conditions and on a slace-time scale that is limited with respect to that of the
entire system.

Having discussed the realization of finite automata by means of reversible
finite automata, we turn now to the realization of finite automata by means of
reversible finite sequential networks based on given primitives.

It is clear that all the arguments of Sections 5 and 6 concerning finite func-
tions immediately apply to the transition function of any given finite automaton.
In particular, in analogy with Figure 5.5, every finite automaton can be realized
by a finite, reversible sequential network based on, say, the AND/NAND primitive
and having the following form (Figure 7.4)

source t

input reversible ouitput
finite

old state new state

temp. stor. channels---

Isirnk

Fto. 1.4 R~ealization of a finite automaton by means ala finite, reversible
sequential netivork.

In order to insure the desired behavior, the state components represented by the
temporary-storage channels must be initialized once and for all with appropriate
values (typically, all -'s), while the source mu3t be fed with appropriate constants
(typically, all 0's) at every sequential step.

In a conventional computer, power dissipation is proportional to the number
of logic, gates, On the other hand, the number of constants/garbage lines in

26

Figure 7.4 is at worst protortional to the number of input/output lines (cf.
Theorems 4.1 and 5.3). From the viewpoint of a physical implementation, where
signals are encoded in some form of energy, the above schema can be interpreted
as follows: Using invertible logic gates, it is ideally possible to build a sequential

computer with -ro internal power dissipation. The only source of power dis-
sipat;ai arises outside the circuit, typically at the input/output interface, if the
user chooses to connect input or output lines to nonreversible digital circuitry.
Even in this case, power dissipation is at most proportional to the number of
argument/result lines,* rather than to the number of logic gates (as in ordinary
computers), and is thus independent of the "complexity" of the function being
computed. This constitutes the central result of the present paper.

8. Revertible Turing machines

We shall assume the reader to be familiar with the concept of Turing machine.
From our viewpoint, a Turing machine is a closed, time-discrete dynamical
system having three state components, i.e., (a) an infinite tape, (b) the internal
state of a finite automaton called head, and (c) a counter whose content indicates
on which tape square the head will operate next. Let T, H, and C be the sets
of tape, head, and counter states, respectively. A Turing machine is reversible
if its transition function r: T X H X C -+ T X H X C is invertible.

It is well kiown that for every recursive function there exists a Turing
machine that ccmputes it, and, in particular, that there exist computation-
universal Turing machines. Are these capabilities preserved if one restricts one's
attention to the class of reversible Tu.ing machines?

The answer to the above question is positive. In fact, in [4] Bennett exhibits a
procedure for constructing, for any Turing machine and for certain quite general
computation formats, a reversible Turing machine that performs essentially the
same computations. (The concept of "reversibility" used by Bennett is weaker
than ours, insofar as the transition function and its inverse are defined only on
distinguished subsets of tape/head/counter states, and even among these states
there are some with no predecessors and others with no successors; however, the
transition rules of Bennett's machine can easily be augmented so as to satisfy

'In fact, the free energy that must be supplied is at most that in which the input
constants are encoded, and the thermal energy that must be removed is at most
that of the garbage outputs. According to Theorem 4.1, the number of constant
lines need not be greater than that of result lines, and the number of garbage lines
need not be greater than that of argument lines.

27

our stronger definition. We shall assume this augmenting procedure to have
been carried out.)

In order to obtain the desired behavior, Bennett's machine is initialized so
that all of the tape is blank except for one connected portion representing the
computation's argument, and the head is set to a distinguished "initial" state
and positioned by the argument's first symbol. At the end of the computation,
i.e., when the head enters a distinguished "terminal" state, the result will appear
on the tape alongside with the argument, and the rest of the tape will be blank.

Thus, a number of tape squareg that are Initially blank will eventually
contain the result. These squares fulfill a role similar to that played by the
constants/garbage lines in Section 5, in the sense that they provide a sufficient
supply of "predictable" input values (blanks) at the beginning of the computa-
tion, and collect the required smount of "random" output values (in this case, a
copy of the argument-cf. the first row of (4.2)) at the end of the computation.

Moreover, during the ccmputetion a number of originally blank tape squares
may be written over and eventually erased. These squares fulfill a role similar
to that played by the temporary-storage lines in Section 5 (cf. the discussilon
centered on Figure 5.4).

It is clear that, like the constants in the reversible combinational networks
of Sectinn 5, the blanks in Bennett's machine play an essential role in the com-
putation, since without their p rence one could not achieve univ.rsanlity and
reiv.rribility at the same time. Intuitively, comp'atatlon "n reversible systems
requires a higher degree of "predictability" about the environment's initial con-
ditions than comput0(lon in nonreversible ones.

Owing to the "hybrid" nature of a Turing machiu, whih involveg several
kinds of computing primitives (an active device, viz., the head, a passive device,
viz., the tape, and mechanisms for head-tape interaction and for head move-
ment), it is difficult to discuss the realizability of a Turing machine by means
of a reversible, distributed computing mechanirm before having expressed the
above primitives in terms of fewer and more elementary ones. For this reason,
we shall deal with this problem at the end of the next section, when suitable
tools will have been introduced.

9. Reversible celular autemata

We shall assume the reader to have some familiarity with the concept of cel-
lular automaton (cf. [21] for details and references). Fiom a physical viewpoint,
cellular automata are in many respects more satisfactory models of computing

28

processes than Turing machines; in particular, they allow one to represet by
means of the same mathematical machinery and at the same level of abstraction
not only a computer proper but also its environment, the interface with its
"users," and the "users" themselves[22]. A cellular automaton is in essence a k-
dimensional (k > 1) array o identical, uniformly interconnected finite automata,
and constitutes a closed, time-diecrete dynamical system whose state set is a
countable Cartesian product of finite sets and whose transition function is con-
tinuous (in the topological sense) and commutes with the translations (i.e., with
the elements of the array'v symmetry group). A cellular automaton is reversible
if its transition function is invertible.

It is well known that there exist cellular automata that are computation-
and construction-universal. Are these capabilities preserved if one restricts one's
attention to the class of reversible cellular automata? The answer to the above
question is positive. In fact, in [20] Toffoli exhibji, a procedure for construct-
ing, for any cellular automaton (presented as an infinite, spaee-iterative sequen-
tial network), a reversible cellular automaton that realizes it. (Note that until
then the existence of computation- and construction-universal reversible cel-
lular automata-which is thus establiehed-had been doubted or, by erroneous
argumente, outright denied.)

Assuming the original cellular automaton ft to be one-dimensional and with
the von Neumann neighborhood (Figure 9.1a), with Toffoli's construction one
obtaiac i two-dimensional cellular automaton M in which the flow of informa-
tion between the celments of the array (or cells) can be visualized a in Figure
9.1b.

9l. (a) (b)

Fia. 9.1 Infonmation flow (a) In a gien onc-dimenuloaal cellular
automaton k, and (b) In the corresponding two-dimenulonal, -mvenblo
realization M.

Each row of M constitutes a revetsible (infinite) automaton which is, of course,
open. Let us consider a particular row p. In analogy with Figure 7.3, let us
interpret the arrows entering a rowv from above (In Figure 9.1) as murce line,

29

snd the ones leaving it from below as sink lines. By construction, when the
source lines are fed with particular constant values (all O's) and the values on
the sink lines are ignored, the "row" automaton will behave as ft. In order '
for M to constitute a reversible realization of f, one must guarantee that p's
source lines are fed with O's at all time steps t > 0. But, by construction, if a
row is initialized to a distinguished blank state and its source lines are fed with
O's, then the row will remain in the blank state and its sink lines will produce
O's. Thus, if all of the rows that lie above p are initialized to the blank state
(Figure 9.2), an inexhaustible supply of O's will "rain down" into p. At the same
time, p's sink lines will produce garbage that will spread down and sideways
through the rows below p, while p itself will reproduce .M's behavior.

p ~ ,simulation of!~

FiG. 9.2 With proper initialization, the reversible two-dimensional cellular
automaton M realizes the one.dimensional automaton ft, which may be
irreversible.

In Section 5, we saw that, starting from a fixed, finite set of invertible logic
primitives, one cannot obtain an isomorpic invertible realization for every in-
vertible finite function; rather, in general one mat be allowed to use ad-hoc
primitives (possibly as "complex" as the function itself) or introduce temporary-
storage channels (thus giving up isomorphism). Similar considerations apply to
finite automata.

Consider now a reversible cellular automaton l f. f can always be realized
as a reversible sequential network with temporary staragc. Is it possible to con-
struct an ;omorphic reversible realization of M if one ib given a free hand in
the choice of primitives? Surprisingly, the answer to this question is negative
(Theorem 9.1 below).

LWM^M 9.1. Le m be the number of binary state variables associated with
eah cell ofta cellular automaton kf, and n the size of its neighborhood. A neces-

,30

sary condition for the isomorphic realizability of ft as a reveraible sequential
network is that m > n.

Proof. We shall sketch the proof for a one-dimensional cellular automaton
if with m - 1, n-- 2, and neighborhood Index (0,-1) (i.e., the next state of
cell i will depend on the current state :. cell i itself and of cell i - 1, that is,
its "left" neighbor. Assume that the required realization M exists, it will have
the form of Figure 9.3a.

- I _ I. -t 11 -_ (d)
combinational network I

dclf dl,(c)

s-I is --

Fic. 9.3 (a) Overall structure of the (assumed) isomorphic reversible
realization of &. Details of the combinationisl part of such realization: (b)
paths from each cell to itself, (c) paths from each cell to its right neighbor,
and (d) nodes implied by the existence of auch paths.

Since each cell is "affected" by itself, there will be paths in the combinational
part of M as in Figure 9.3b; similarly, since each cell is "affected" by its left
neighbor, there will be paths as in Figure 9.3c. Thus, there will be nodes as in
Figure 9.3d. These nodes cannot stand for invertible primitives (note fan-in at p
and fan-out at q) unless further arcs exist (namely, an additional arc entering p
and one leaving q). In turn, these arcs imply the existence of new nodes-and so
on ad infinitum- ince connecting these arcs to one another would violate the
partial ordering ("causality") associated with function composition). Clearly, it
is impossible to complete the construction without introO Ing either cycles or
paths of infinite length.g

THEOREM 9.1 There exist reversible cellular automata that do not admit

of an imuAorphic reversible realizaton.

Proof. In [2, Amoroso and Patt exhibit reversible cellular avtomata (more

31

amply discussed In [21]) with m - I and n - 4. The thesis follows from Lemma
9.1.3

Finally, it is well known that any Turing machine can be embedded in a
suitable cellular automaton. Thus, according to the foregoing discussion, aay
Turing machine can be realized by an infinite reversible sequential nework.

10. Conclusions and perspectives

What properties of an abstract computing system are critical in determining
whether or not it can carry out a given task? To give an example, it is known tha.
linearity is incompatible with computation universality[15]. Many other issues,
dealing, for instance, with monotonicity, finiteness of storage, availability of
constants, etc., have been discussed extencively in the past and are essentially
settled. On the other hand, only recently has some light been thrown on the
question of to what extent the imposition of the reversibliity tonstraiat affects
the computing capabilities of a system. The sustained debate on this issue has
been fueled and at times confused by obvious connections with certain physical
questions.

In this paper, we have laid down the foundationa for the theory of reversible
computing, i.e., a theory of computing based on invertible primitives and com-
position rules that preserve invertibility, and we have shown that this theory can
deal satisfactorily with both the functional and the structural aspects of com-
puting processes. In particular, those structures that constitute the traditional
paradigms of the theory of computing, such as combinational and sequential net-
works, finite automata, Turing machines, and cellular automata, have been as-
certained to have reversible counterparts of equal computing power. (Analogous
considerations apply to systems of difference equations, as will be shown in a later
paper.) Thus, the choice to use reversible mechanisms in describing computing
processes is a viable one. What can be gained from this choice?

In the synthesis of an abstract computing system for a given task, the re-
quirement that the system be reversible can in general be met only at the cost
of greater structural complexity. In other words, one may need more (but not
many more) gates and wires. However, the system's very reversibility prcmises
to be a key factor in leading to a mrre efficient ph; sical realization, since, at
the microscopic level, the "primitives" and the "composition rules" available
in the physical world resemble much more closely those used in the theory of
reversible computing than those used in traditional logic design. For example,
it appears that coaservative logic might be completely modeled by processes of
elastic collision tetween identical particles[7].

32

Besides questions of efficient implementation of computing systems, there
are several other research lines to which the concepts of reversible computing
may give a substantial contribution. Here, we shall limit ourselves to naming
a few on which some preliminary investigations have been carried out, such
as error detection; numerical analysis end, in particular, the integration of
differential equations; number theory and the factoring of large integers; second-
order automata and state-reduction techniques; synchronization of computing
processes; and cellular automata and the modeling of fundamental physical laws.

The main reason why the concept of reversibility is so pervasive is the fol-
lowing. In every reversible system there are a number of quantities (functions of
the system's state) which are conserved, i.e., which are constant along each of the
system's trajectories (ef. the "integrals of the motion" of theoretical mechanics).
Both in mathematical and in physical research, experience has shown that many
interesting properties of a system can usually be expressed in terms of conserved
quantities, and on this basis one can often make nontrivial statements about the
behavior of a system or a class of systems without having to go into a detailed,
case-by-case analysis of their operation.

Thus, in the more abstrect context of computing, the laws of "conservation
of information" mty play r. role analogous to tho5e of conservation of energy
and momentum in physics.

I. Hlatorirel and bibliographical notes

The computing element known as the "Fredkin gate" was apparently first
described by Quine as an abstract primitive, and was known to Petri[10]. Some
conservative (but not reversible) circuits using complementary signal streams
were discussed by von Neumann25] as early as 1952. More recently, Kinoshita
and associates[1] worked out a classification of logic elements that "conserve" O's
and I's; their work, mof;-1 I by research in magnetic-bubble circuitry, men-
tions the possibility o ... nergy-efficient computation, but has apparently
little concern for reversibility.

The AND/NAND element was known to Petri[10], and was mentioned en pas-
sant, in the context of reversibility arguments, by Landauer[12]. The generalized
AND/NAND functions were introduced by Toffoli[201 for proving the universality
of reversible cellular automata.

Doubts about the coaTputational capabilities of reversible cellular automata
were first expressed by Moore[16], and more formally stated as a conjecture
by B3urkel[5. Other parties in the debate were Smith[18), Amorovo and Patt[2],
Aladyev[1, and Di Gregorlo and Ttautteur[{i].

33

Distributed systems which are not reversible per se, but in which
computation-universal, reversible structures can be embedded by proper in-
itialization, were described by Priese[17].

The idea that universal computing capabilities could be obtained from re-
versible, dissipationless (and, of course, nonlinear) physical circuits apparently
first oceiged to von Neumann, as reported in a posthumous paper[26]. This
idea was also aired by Bennett[4], with some support from his construction of
reversible Turing machines. A more formal proof of the physical realizability of
such circ!-.it was given by Toffoli[23, and some conerete though not yet entirely
practical approaches are outlined in [8]. A much more promising approach, based
on the interaction gate, has been recently suggested by Fredkin[7].

Owing to the interdisciplinary nature of the subject, it is quite difficult to
locate, evaluate, and credit all research results that may somehow be relevant
to reversible computing. We shall appreciate any contributions to the above
bibliographical notes.

Aeknow!edgments

As acknowledged in the text, many ideas discussed in the present paper were
originated by Prof. Edward Frcdkin. Aside from this, I wish to thank him for
much useful advice and encouragment.

List of rderenees

[1] ALADYBV, Viktor, "Some Questions Concerning Nonconstructibility and
Computability in Homogeneous Structures," Izv. Akad. Nauk. Estonian
SSR, Fiz.-Mat. 21 (1972), 210-214.

[2] AMoRoso, Strafino, and PATT, Y. N., "Decision Procedus for Surjectivity
and Injectivity of Parallel Maps for Tessellation Structures," J. Comptr.
Syst. Sci. B (1972), 448-464.

[3] BA TON, Edward, "A Reversible Computer Using Conmervative Logic,"
6.895 Term Paper, MIT Dept. of Electr. Eng. Comp. Sci. (1978).

[4] BENNnDTT, C.H., 'Logical Reve.'ibility of Computation," IBMJ. Res. Dev.
e (1973), 525-532.

[5] BuRms, A. W., "On BackwardsDeterministic, Erasable, and Garden-of-
Eden Automata," Tech. Rep. no. 012520.4-T, Comp. Comm. Sci. Dept.,
Univ. of Mhchigan (1971).

34

[6] Di Gnonio, Salvatore, and TRAUTMUR, Giorgio, "On Reversibility in
Cellular Automata," J. Comptr. Syst. Sci. J1 (1975), 382-391.

[7] FWDKCIN, Edward, and TorpotI, Tommaso, "Conservative Logic," (in
preparation). Some of the material of this paper is tentatively available
in the form of unpublished notes from Prof. Fredkin's lectures, collected
and organized by Bill Silver in a 0.895 Term Paper, "Conservative Logic,"
MIT Dept. of Electr. Eng. Comp. Sci. (1978).

[8] FnDmIN, Edward, and ToproiL, Tommaso, "Design Principles for
Achieving High-Performance Submicron Digital Technologies," Propose!
to DARPA, MIT Lab. for Comp. Sci. (1978).

[9] HBNNIM, C. H., Iterative Arrays of Logical Circuits, John Wyley and Sons
(1961).

[101 HOLT, Anatol, Personal communication (1979).
[I1] KINostitTA, Kozo, et al., "On Magnetic Bubble Circuits," LM Trans.

Computers 0-75 (1976), 247-253.
[12] LANDAUER, RoIf, "Irreversibility and Heat Generation in the Computing

Process," IBM J. 5 (t91), 183-191.
[13] LANDAUSE, Rolf, "Fundamental Limitations in the Computational

P.-ocess," Tech. Rep. RC 6048, IBM Thomas J. Watson Res. Center
(1978).

[14] MAcK Y, G. W., Mathematical Foundations of Quantum Mechanics, W.
A. Benjamin (1983).

[15] Mn mn, J. D., and ZEIGLER, B. P., "On the Limits of Linearity," Theory
of Machines and Computation, 229-242, Academic Press (1971).

[16] MooRM, E. F., "Machine Models of Self.Reproduction," Proc. Symp. Appl.
Math. (Amer. Math. Soc. 14 (1962), 17-33.

[17] Pranse, Lutz, On a Simple Combinatorial Structure Sufficient for Sublying
Nontrivial Self-Reproduction, J. Cybernetics 5 (1976), 101-137.

[18] SNITH, A. R. 111, "Cellular Automata Theory," Tech. Rep. no. 2, Stanford
Electr. Lab., Stanford Univ. (1969).

[19] SUTHBRLAND, I. E., and MAD, C. M., "Micrielectronics and Computer
Science," Scientific American 237:3 (Sept. 1977), 210-262.

[20] TOFFOLI, Tommaso, "Computation and Construction Universality of
Reversible Cellular Automata," J. Comput. Syst. Sci. 15 (1 77), 213-
231.

[21] ToFFOLY, Tommaso, 'Cellular Automata Mechanics" (Ph.D. Thesis), Tech.
Rep. no. 208, Logic of Computers Group, Univ. of Michigan (1977).

[22] TorroU, Tommaso, "The Role of the Observer in Uniform Systems,"
Applied General Systems Research (ed. G. J. Kilr), 39-400 (Plenum

35

Press, 1978).
[23) ToProLI, Tommas, "Blcontinuous Extensions of Invertible Combinatorial

Functions," Tech. Memo MIT/LCS/TI-124, MIT Lab. for Comp. Scl.
(1979) (to appear in Math. Byst. Theory).

(24) TURING, A. M., "On Computable Numbers, with an Application to the
Entscheiduugproblem," Proc. London Math. Soc., smr. 2, 43 (1936), 544-
546.

1251 VON Nw-mArNN, John, "Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components," Automata Studies (edited by
C. E. Shannon and . McCarthy), 43-98, Princeton Univ. Press (1958).

126 WwvwNGTON, I. L., "A New Concept In Computing," Proc./1R 47/(1961),
516-523.

36

OICIAL DIS rIBUTICN LIST

Defense Technical Information Center Dr. A. L. Slafkosky
Cameron Station Scientific Advisor
Alexandria, VA 22314 Cmixndant of the Marine Corps

12 copies (Code IR-1)
Washington, D. C. 20380

Office of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington, VA 22217
I copy

Office of Naval Research
Branch Office/Boston Naval Ocean Systems Center,Code 91
Building 114, Section D Headquarters-Ozaputer Sciences &
666 Suner Street Sirmlation Department
Boston, MA 02210 San Diego, CA 92152

1 copy Mr. Lloyd Z. Maudlini copy
Office of Naval Research
Branch Office/Chicago Mr. E. H. Gleissner
536 South Clark Street Naval Ship Research & Developimnt Center
Chicago, Mh 60605 Carptation & Math Department

I copy Bethesda, MD 20084
Ioopy

Office of Naval Research
Branch Office/Pasadena Captain Grace M. IVpper (008)
1030 East Green Street Naval Data Automation cmad
Pasadena, Ch 91106 Washington Navy Yard

1 copy Building 166
Washington, D. C. 20374

New York Area l copy
715 Broadway - 5th floor
New York, N. Y. 10003 Mr. Kin B. Thcmpson

1 copy Technical Director
Information Systems Divisia.i

Naval Research Laboratory (OP-91T)
Technical Information Division Office of Chief of Naval Operations
Code 2627 Washington, D. C. 20350
Washington, D. C. 20375 1 copy

6 copies

Assistant Chief for Technology
Office of Naval Research

I. Code 200
Arlington, VA 22217

1 copy

Office of Naval lesearch
Code 455
Ailington, VA 22217

I copy

